summary.
Edit me
Nvidia AGX Xavier and Thumper RC Rover
Hardware Specifications
| Type | Details | Type | Details |
|---|---|---|---|
| frame | Custom carbon fiber chassis | FC | Nvidia AGX Xavier Developer Kit |
| motor | 4x brushless DC motors | ESC | 30A ESC with regenerative braking |
| RC | 2.4GHz DSSS radio | mode | Autonomous/Manual hybrid |
| weight | 3.2kg with battery | class | Research/Development platform |
| battery | 6S LiPo 5000mAh | air-time | 45 minutes continuous operation |
| configurator | Custom ROS2 interface | last updated | July 10, 2021 |
Project Integration with GitHub Repositories
AI-Assisted Infrastructure Inspection
Repository: AI-Assisted-Inspection

This project leverages Xavier’s computing power for Mixed Reality infrastructure inspection:
# Xavier-powered inspection system
import tensorrt as trt
import cv2
import numpy as np
class XavierInspectionAI:
def __init__(self):
self.vision_model = self.load_optimized_model()
self.ar_overlay = AROverlaySystem()
def analyze_structure(self, camera_feed):
# Real-time structural analysis
defects = self.vision_model.detect_anomalies(camera_feed)
ar_annotations = self.ar_overlay.generate_markers(defects)
return {"defects": defects, "ar_data": ar_annotations}
3D Printed Drone Assembly Integration
Repository: 3D-Printed-Drone-Assembly

Custom rover-drone coordination system:
- Autonomous Navigation: Xavier processes LiDAR and camera data for path planning
- Drone Coordination: Communication with autonomous drones for area mapping
- Real-time Processing: 30 TOPS AI performance for simultaneous localization and mapping (SLAM)
Performance Specifications
Computing Performance
- AI Performance: 32 TOPS (Tera Operations Per Second)
- GPU: 512-core Volta GPU with Tensor Cores
- CPU: 8-core ARM v8.2 64-bit CPU
- Memory: 32GB 256-bit LPDDR4x
- Storage: 32GB eUFS 2.1
Power Efficiency
| Mode | Power Consumption | Performance | |——|——————|————-| | Max Performance | 30W | 32 TOPS | | Balanced | 20W | 24 TOPS | | Power Saver | 10W | 16 TOPS | | Idle | 5W | Background tasks |
Software Stack
Operating System & Frameworks
# JetPack 5.1 installation
sudo apt update
sudo apt install nvidia-jetpack
# Deep learning frameworks
pip3 install torch torchvision
pip3 install tensorflow-gpu
pip3 install onnxruntime-gpu
# ROS2 for robotics
sudo apt install ros-galactic-desktop
Custom Applications
Thumper Rover Control System
# Rover control with Xavier integration
import rclpy
from geometry_msgs.msg import Twist
from sensor_msgs.msg import Image, PointCloud2
class ThumperController:
def __init__(self):
self.xavier_ai = XavierAIProcessor()
self.navigation = AutonomousNavigation()
def process_sensor_data(self, lidar_data, camera_data):
# Xavier AI processing
obstacles = self.xavier_ai.detect_obstacles(camera_data)
path = self.navigation.plan_path(lidar_data, obstacles)
return self.generate_control_commands(path)
Mixed Reality Integration
# AR overlay for infrastructure inspection
class MixedRealityInspection:
def __init__(self):
self.xavier_inference = XavierAI()
self.hololens_interface = HoloLensAPI()
def real_time_inspection(self, structure_scan):
# Process with Xavier AI
analysis = self.xavier_inference.structural_analysis(structure_scan)
# Generate AR overlays
ar_markers = self.generate_defect_markers(analysis)
self.hololens_interface.display_overlays(ar_markers)
Integration with Other AIOT Projects
Digital Twin System
Repository: battery_digital_twin
Xavier processes real-time battery telemetry for digital twin modeling:
# Battery digital twin with Xavier processing
class BatteryDigitalTwin:
def __init__(self):
self.xavier_ml = XavierMLProcessor()
self.uncertainty_model = UncertaintyQuantification()
def update_twin(self, battery_telemetry):
# Real-time state estimation
state = self.xavier_ml.predict_battery_state(battery_telemetry)
uncertainty = self.uncertainty_model.calculate_bounds(state)
return {"state": state, "confidence": uncertainty}
Drone Coordination Network
Repository: bebop_autonomy

Xavier serves as ground control for autonomous drone fleet:
- Mission Planning: Real-time path optimization for multiple drones
- Computer Vision: Object detection and tracking coordination
- Communication Hub: 5G/WiFi coordination between rover and drone fleet
Development Environment
Docker Containerization
# Xavier development container
FROM nvcr.io/nvidia/l4t-ml:r35.2.1-py3
# Install custom dependencies
RUN apt-get update && apt-get install -y \
ros-galactic-desktop \
python3-opencv \
librealsense2-dev
# Copy application code
COPY ./thumper_control /app/thumper
COPY ./ai_inspection /app/inspection
WORKDIR /app
CMD ["python3", "main.py"]
Real-time Performance Monitoring
# Xavier performance monitoring
import jetson.inference
import jetson.utils
class XavierMonitor:
def __init__(self):
self.stats = jetson.utils.cudaDeviceGetMemoryInfo()
def get_performance_metrics(self):
return {
"gpu_utilization": self.get_gpu_usage(),
"memory_usage": self.get_memory_stats(),
"temperature": self.get_thermal_status(),
"power_consumption": self.get_power_draw()
}