- Edge AI Implementation Portfolio
Edge AI Implementation Portfolio

Real-World Edge AI Projects
Jetson Nano AI RC Car Agent
Repository: airc-rl-agent
This project demonstrates autonomous navigation using deep reinforcement learning deployed directly on Jetson Nano edge device:
# Edge AI inference optimization for real-time control
import tensorrt as trt
import pycuda.driver as cuda
import numpy as np
class EdgeAIController:
def __init__(self, model_path):
# Load TensorRT optimized model for edge inference
self.engine = self.load_tensorrt_engine(model_path)
self.context = self.engine.create_execution_context()
self.stream = cuda.Stream()
def real_time_inference(self, camera_input):
# Preprocess image data
processed_input = self.preprocess_image(camera_input)
# GPU inference with minimal latency
output = self.engine_inference(processed_input)
# Convert to control commands
steering, throttle = self.interpret_output(output)
return steering, throttle
def preprocess_image(self, image):
# Optimized preprocessing for edge device
resized = cv2.resize(image, (224, 224))
normalized = resized.astype(np.float32) / 255.0
return np.expand_dims(normalized, axis=0)
AI-Assisted Infrastructure Inspection
Repository: AI-Assisted-Inspection

Edge AI deployment for real-time structural analysis using Mixed Reality:
# Edge AI for infrastructure inspection
class EdgeInspectionAI:
def __init__(self):
self.defect_detector = self.load_optimized_model()
self.ar_processor = AROverlayEngine()
self.edge_cache = EdgeCacheManager()
def analyze_structure_realtime(self, camera_feed):
# Real-time defect detection on edge device
defects = self.defect_detector.detect(camera_feed)
# Generate AR overlays for immediate feedback
ar_annotations = self.ar_processor.create_overlays(defects)
# Cache results for offline analysis
self.edge_cache.store_analysis(defects, ar_annotations)
return {
'defects': defects,
'ar_overlays': ar_annotations,
'confidence_scores': self.calculate_confidence(defects)
}
Edge AI Optimization Techniques
Model Quantization and Compression
# TensorRT optimization for edge deployment
import tensorrt as trt
class ModelOptimizer:
def __init__(self):
self.logger = trt.Logger(trt.Logger.WARNING)
self.builder = trt.Builder(self.logger)
def optimize_for_edge(self, onnx_model_path, precision='FP16'):
# Create optimization profile
config = self.builder.create_builder_config()
config.max_workspace_size = 1 << 30 # 1GB
# Enable precision optimization
if precision == 'FP16':
config.set_flag(trt.BuilderFlag.FP16)
elif precision == 'INT8':
config.set_flag(trt.BuilderFlag.INT8)
# Build optimized engine
network = self.builder.create_network()
parser = trt.OnnxParser(network, self.logger)
with open(onnx_model_path, 'rb') as model:
parser.parse(model.read())
engine = self.builder.build_engine(network, config)
return engine
Real-time Performance Monitoring
# Edge device performance monitoring
class EdgePerformanceMonitor:
def __init__(self):
self.metrics_collector = MetricsCollector()
self.alert_system = AlertManager()
def monitor_inference_performance(self):
metrics = {
'inference_time': self.measure_inference_latency(),
'memory_usage': self.get_memory_consumption(),
'gpu_utilization': self.get_gpu_stats(),
'temperature': self.get_thermal_status(),
'power_consumption': self.get_power_draw()
}
# Check performance thresholds
if metrics['inference_time'] > 100: # ms
self.alert_system.trigger_latency_alert()
if metrics['temperature'] > 75: # Celsius
self.alert_system.trigger_thermal_alert()
return metrics
Edge AI Architecture Patterns
Federated Learning at the Edge
Integration with: battery_digital_twin
# Federated learning for distributed edge devices
class EdgeFederatedLearning:
def __init__(self, device_id):
self.device_id = device_id
self.local_model = self.initialize_local_model()
self.federation_client = FederationClient()
def local_training_cycle(self, local_data):
# Train on local edge device data
self.local_model.fit(local_data, epochs=1)
# Extract model weights
local_weights = self.local_model.get_weights()
# Send to federation server
self.federation_client.send_weights(local_weights)
# Receive global model update
global_weights = self.federation_client.receive_global_weights()
self.local_model.set_weights(global_weights)
return self.evaluate_local_performance()
Edge-Cloud Hybrid Processing
# Hybrid edge-cloud processing strategy
class HybridProcessingManager:
def __init__(self):
self.edge_processor = EdgeAIProcessor()
self.cloud_client = CloudAPIClient()
self.decision_engine = ProcessingDecisionEngine()
def process_request(self, data, urgency_level):
# Decide processing location based on requirements
processing_strategy = self.decision_engine.choose_strategy(
data_size=len(data),
urgency=urgency_level,
network_quality=self.get_network_status(),
edge_load=self.edge_processor.get_current_load()
)
if processing_strategy == 'edge':
return self.edge_processor.process(data)
elif processing_strategy == 'cloud':
return self.cloud_client.process_async(data)
else: # hybrid
return self.hybrid_process(data)
Security and Privacy at the Edge
Privacy-Preserving Edge AI
Inspired by: BruteForceAI security principles
# Privacy-preserving edge AI processing
class PrivacyPreservingEdgeAI:
def __init__(self):
self.differential_privacy = DifferentialPrivacyEngine()
self.homomorphic_encryption = HomomorphicEncryption()
self.local_anonymizer = DataAnonymizer()
def secure_inference(self, sensitive_data):
# Anonymize data locally
anonymized_data = self.local_anonymizer.anonymize(sensitive_data)
# Add differential privacy noise
private_data = self.differential_privacy.add_noise(anonymized_data)
# Perform inference on privacy-protected data
result = self.ai_model.predict(private_data)
# Return results without exposing raw data
return self.sanitize_output(result)
Edge AI Performance Benchmarks
Inference Performance Comparison
| Model Type | Edge Device | Inference Time | Accuracy | Power (W) | |————|————-|—————|———-|———–| | YOLOv5s | Jetson Nano | 45ms | 87.6% | 10W | | MobileNetV2 | Jetson Nano | 15ms | 94.2% | 8W | | Custom RL Agent | Jetson Nano | 8ms | 92.1% | 10W | | ResNet18 | Jetson Xavier | 12ms | 95.4% | 20W | | EfficientNet-B0 | Raspberry Pi 4 | 180ms | 93.1% | 5W |
Edge vs Cloud Comparison
| Metric | Edge Processing | Cloud Processing | |——–|—————-|——————| | Latency | 8-45ms | 150-500ms | | Privacy | High | Medium | | Connectivity Required | No | Yes | | Scalability | Limited | High | | Cost (per inference) | Low | Variable | | Offline Capability | Yes | No |
Integration with IoT Ecosystem
LoRaWAN Edge AI Integration
Repository: mydoc_lora_monitoring
# Edge AI processing for LoRaWAN sensor data
class LoRaEdgeAI:
def __init__(self):
self.anomaly_detector = EdgeAnomalyDetector()
self.prediction_model = EdgePredictionModel()
self.lora_gateway = LoRaGateway()
def process_sensor_data(self, lora_packet):
# Parse sensor data from LoRa packet
sensor_data = self.parse_lora_payload(lora_packet)
# Real-time anomaly detection on edge
anomalies = self.anomaly_detector.detect(sensor_data)
# Predictive analytics for maintenance
predictions = self.prediction_model.predict(sensor_data)
# Immediate response for critical conditions
if anomalies['severity'] > 0.8:
self.trigger_immediate_response(anomalies)
return {
'processed_data': sensor_data,
'anomalies': anomalies,
'predictions': predictions,
'response_time': self.get_processing_time()
}
Digital Twin Edge Processing
Repository: battery_digital_twin

# Edge AI for digital twin real-time updates
class EdgeDigitalTwin:
def __init__(self):
self.twin_model = DigitalTwinModel()
self.uncertainty_quantifier = UncertaintyQuantification()
self.edge_optimizer = EdgeOptimizer()
def update_twin_realtime(self, sensor_telemetry):
# Real-time state estimation on edge
current_state = self.twin_model.update_state(sensor_telemetry)
# Quantify uncertainty locally
uncertainty_bounds = self.uncertainty_quantifier.calculate(current_state)
# Optimize edge resource usage
optimization_result = self.edge_optimizer.optimize_performance()
return {
'digital_twin_state': current_state,
'uncertainty': uncertainty_bounds,
'confidence_score': self.calculate_confidence(uncertainty_bounds),
'optimization_metrics': optimization_result
}
Development Tools and Frameworks
Edge AI Development Pipeline
# Edge AI model development and deployment pipeline
# 1. Model training (cloud/workstation)
python train_model.py --dataset sensor_data --epochs 100
# 2. Model optimization for edge
python optimize_for_edge.py --model trained_model.onnx --precision FP16
# 3. Edge deployment
python deploy_to_edge.py --device jetson-nano --model optimized_model.trt
# 4. Performance monitoring
python monitor_edge_performance.py --device jetson-nano --interval 60
Cross-platform Edge Deployment
# Multi-architecture Docker container for edge AI
FROM nvcr.io/nvidia/l4t-ml:r35.2.1-py3 AS jetson-base
FROM arm64v8/python:3.8-slim AS arm64-base
# Common dependencies
RUN apt-get update && apt-get install -y \
python3-opencv \
python3-numpy \
libgstreamer1.0-dev
# Copy optimized models
COPY models/ /app/models/
COPY src/ /app/src/
WORKDIR /app
CMD ["python3", "edge_ai_server.py"]
The following wiki, pages and posts are tagged with
| Title | Type | Excerpt |
|---|
{# nothing on index to avoid visible raw text #}