source file
-
when choosing airframes, try challeging one such as Goldberg, which is
-
wing load
- wing configuration
- wing location / high/ mid /low wing
The lift formula is rearranged to determine speed as a function of wing loading and the lift coefficient. If we assume that the lift coefficient is approximately constant between the two aircraft during cruise (this is an acceptable assumption here to demonstrate the concept of wing loading), then we can compare the effect that wing loading has on the resulting cruise speed.
An increased wing loading corresponds to a smaller wing at a given mass, and results in an increased cruise speed. Of course the Legacy has a much larger engine which allows it to reach a far higher cruise speed (drag is proportional to V^2), but the point still stands that an aircraft that is designed to cruise at higher speeds will do so most efficiently with a higher wing loading. The highly loaded wing also results in a higher stall speed (clean), and a more complicated flap arrangement (greater increase in lift coefficient) is thus required to reduce the stall speed.
wing-area
Lift is an aerodynamic force which is produced as a consequence of the curvature of the wing and the angle of attack of the relative velocity flowing over the surface. It follows that larger wings of a greater planform area are able to produce more lift; this is easily shown mathematically from the lift formula:
L
1 2 ρ V 2 A C L L : Total Lift Force ρ : Air density V : Velocity A Planform Wing Area C L : Lift Coefficient The total lift force is increased in proportion with the wing area.
Higher aspect ratio wings result in a lower lift-induced drag coefficient. This is why gliders have long slender wings (high AR) as drag minimization is paramount to obtain the best glide ratio. A high aspect ratio wing is more structurally challenging to design, as the wing will flex more in flight, creating larger bending stresses and a damped roll control response. Structural flutter is also more prevalent in higher aspect ratio wings.
- control surface
The flaps and ailerons are attached to a rear spar which runs along the span. The spar is designed to resist and transfer the loads generated by the deflection of the control surfaces.
Trailing edge flaps are one of two devices used to extract additional lift from a wing at low speed. Slats modify the camber at the leading edge, performing a similar roll to the flaps. High-lift devices are a large topic on their own and are discussed in detail in Part 4 of this mini-series.
Ailerons are used to provide roll control and do so by generating a large rolling moment through asymmetrical deflection. The figure below demonstrates a roll to the left. The aileron on the right wing deflects downwards which produces additional upward lift on the right wing. The left aileron deflects upward which modifies the flow field, generating a downforce at the left wingtip. Together these deflections generate a rolling moment which forces the right wing up, and the left wing down.
[aerodynamicsEngineeringForStudents(https://github.com/aiegoo/uas-reference/blob/master/drone-dev/aeroEngineering.pdf)
The following wiki, pages and posts are tagged with
Title | Type | Excerpt |
---|---|---|
2021-09-26-thesis-indoor-drone.md | post | After launching a file, call the following services to initialize the drone in Gazebo and the Particle Filter algorithm |
Udemy qt5 course by Packt Publishing | post | Tue, Oct 26, 21, Dive into custom model-views, showcasing the power and flexibility of the mvodel view architecture, with extensive www applications |
Pilot handbook + drone resource wiki | post | Tue, Nov 02, 21, pilot's handbook summarized on top of key cocnepts from rapa drone-resource |
Single rotor drone | post | Thu, Nov 04, 21, single rotor air vehilce with rudder and flap to navigate |
Pilot's preflight checklist FAA | post | Tue, Nov 09, 21, preflight checklist with data mining, d3 visualization and google sheet implementation |
final-project | post | Sat, Nov 27, 21, motion planning dashboard with django vue and fcnd |
motion planning dashboard hardware setup | post | Wed, Dec 01, 21, master, raspi, database, video-streaming, api server setup |
px4 mavlink and qgc integration with 4gremoteoperation | post | Tue, Jan 18, 22, powerful 3d simulation environment for autonomous robots suitable for testing object-avoidance and cv |
Airlink by skydrone, youtube | post | Friday, airlink for mission flight, LTE connectivity and dl-ready |
set up with raspi connected to fc | post | Tue, Jan 25, 22, ardupilot documentation |
drone programming primer for software development | post | Mon, Jan 31, 22, flight stack with firmware middleware and api |
runcam with fc connection | post | Tue, Feb 15, 22, runcam split 2 with fc |
my new fixed wing AR Wing Pro, ready for dji HD fpv system | post | Thu, Feb 17, 22, setup guide after opening the package |
realflight 7 setup and console game | post | Thu, Feb 24, 22, flight simulation with real flight 7 |
uavmatrix's cast pro docs | post | Tue, Mar 01, 22, another way to integrate devices to gcs |
firmtech7 of naver cafe raspi drone project | post | Thu, Mar 03, 22, using raspi as fc to control small drone |
Garupner Polaron ex | post | Sun, Mar 06, 22, polaron 2 channels dc charger |
svg visualization messages and parameters | post | Mon, Mar 07, 22, organized structure and tree map of px4 messages and parameters |
lx network, airlink, gcs and data transmission on smart radio, rf mesh and quantum encryption | post | Tue, Apr 26, 22, all about setup and how it operates and managed |
Advanced Configuration | page | |
Advanced Features | page | |
Advanced Flight Controller Orientation Tuning | page | |
rflysim tltr | page | |
Bootloader Update | page | |
Bootloader Flashing onto Betaflight Systems | page | |
Compass Power Compensation | page | |
drones.md | page | my drones I work with and at my disposal. |
ESC Calibration | page | |
Flight Termination Configuration | page | |
my 100 supporters | page | my freelancers I work with since 2018. |
index.md | page | My recent projects are leveraging generative AI across various domains, yielding significant achievements. These encompass Digital Twin, Voice-to-Command, RA... |
Land Detector Configuration | page | |
About this site and its author | portfolio | My portofolio site and its mission statement |
🔭AIOT projects | page | summary. |
contents deploy automation | page | Pilot test on the automation prototype. |
pixhawk apm racing drone | page | summary. |
Challenger Engineering Project | page | summary. |
pixhawk tools | page | rFlyeval project details where Matlab Mathwor Simulink were used for complete process of UAV and UAS. |
Korea drone companies | page | summary. |
Racing drone, attck drone | page | summary. |
Django Django Two scoops | page | summary. |
docker learning curve | page | summary. |
🔭 Ground Control Station web-based approach | page | summary. |
gitlab | page | summary. |
🔭lora monitoring app | page | summary. |
🔭 MQTT pages | page | summary. |
My course list | page | my course list from udemy, udacity, NCS and other sources |
Nextcloud | page | summary. |
Automation pipeline | page | summary. |
Pixhawk 4 | page | summary. |
Pixhawk overview | page | summary. |
🔭raspberry pi project | page | summary. |
🔭yuneec realsense obstacle avoidance | page | summary. |
ROS topic for micro control | page | summary. |
🔭 RQt-based gui | page | summary. |
🔭sensor detection | page | RealSense with Open3D |
🔭Serializer with API | page | summary. |
Rules of thumb | page | Contact me for any support issues. |
web-dev ops pages | page | |
🔭 Webrtc | page | summary. |
Parameter Reference | page | |
Finding/Updating Parameters | page | |
Precision Landing | page | |
pixhawk tools advanced | page | rFlyeval project details where Matlab Mathwork Simulink were used for complete process of UAV and UAS. |
pixhawk tools | page | rFlyeval project details where Matlab Mathwor Simulink were used for complete process of UAV and UAS. |
RTK GPS | page | GNSS/GPS systems |
Iridium/RockBlock Satellite Communication System | page | |
Static Pressure Buildup | page | # Static Pressure Buildup Air flowing over an enclosed vehicle can cause the *static pressure* to change within the canopy/hull. Depending on the location of holes/leaks in the hull, you can end up with under or overpressure (similar to a wing). The change in pressure can affect barometer measurements, leading... |
Air Traffic Avoidance: ADS-B/FLARM | page | |
Air Traffic Avoidance: UAS Traffic Management (UTM) | page | |
Using the ECL EKF | page |