Wed, May 22, 24, run Mistral7B locally and integrate with existing llm app
This is a draft, the content is not complete and of poor quality!
adaptive rag
corrective rag
self-reflection / self-grading rag

Open gist

</div>

</div>

Mistral integration

Building an edge model using Mistral 7B involves several steps, from setting up your environment to deploying the model on an edge device. Below is a high-level guide on how to go about it:

1. Setting Up Your Environment

First, you need to set up your environment. This involves installing the necessary libraries and dependencies.

Prerequisites

  • Python 3.7+
  • PyTorch
  • Transformers library from Hugging Face
  • Other necessary libraries

Example: Setting Up Environment

# Create a virtual environment
python3 -m venv mistral-env
source mistral-env/bin/activate

# Upgrade pip
pip install --upgrade pip

# Install PyTorch (select the right version based on your CUDA version)
pip install torch torchvision torchaudio

# Install Hugging Face Transformers and other libraries
pip install transformers datasets

2. Download the Model

You can download the Mistral 7B model from Hugging Face’s model hub.

Example: Downloading the Model

from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the model and tokenizer
model_name = "mistralai/Mistral-7B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

3. Model Inference

You can now perform inference using the loaded model. This involves tokenizing the input text, generating a response, and decoding the output.

Example: Running Inference

# Sample input text
input_text = "Once upon a time"

# Tokenize the input text
inputs = tokenizer(input_text, return_tensors="pt")

# Generate a response
outputs = model.generate(inputs.input_ids, max_length=50, num_return_sequences=1)

# Decode the generated text
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)

4. Optimizing the Model for Edge Deployment

Running large models like Mistral 7B on edge devices can be challenging due to resource constraints. You can optimize the model using techniques like quantization and pruning.

Quantization

Quantization reduces the model size by converting the weights from 32-bit floating point to 8-bit integers.

Example: Quantizing the Model

import torch.quantization

# Quantize the model
model.eval()
quantized_model = torch.quantization.quantize_dynamic(
    model, {torch.nn.Linear}, dtype=torch.qint8
)

5. Deploying on Edge Device

Deploy the quantized model on an edge device. This may involve transferring the model to the device and writing a script to load and run the model.

Example: Deploying on Raspberry Pi

  1. Transfer Model Files
    • Transfer the model files to your Raspberry Pi using scp or a similar method.
  2. Install Dependencies on Raspberry Pi

     # SSH into your Raspberry Pi
     ssh pi@your_pi_ip_address
    
     # Install dependencies
     sudo apt-get update
     sudo apt-get install python3-pip
     pip3 install torch transformers
    
  3. Run the Inference Script

     # Save the following script as run_model.py on your Raspberry Pi
    
     from transformers import AutoModelForCausalLM, AutoTokenizer
    
     # Load the model and tokenizer
     model_name = "path_to_quantized_model"  # Change this to the path where your quantized model is saved
     tokenizer = AutoTokenizer.from_pretrained(model_name)
     model = torch.load(model_name)
    
     # Sample input text
     input_text = "Once upon a time"
    
     # Tokenize the input text
     inputs = tokenizer(input_text, return_tensors="pt")
    
     # Generate a response
     outputs = model.generate(inputs.input_ids, max_length=50, num_return_sequences=1)
    
     # Decode the generated text
     generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
     print(generated_text)
    
     # Run the script
     python3 run_model.py
    

6. Monitoring and Maintenance

Ensure you have monitoring in place to track the performance and resource utilization of the model on the edge device. Regular maintenance and updates may be required to keep the model performing optimally.

Resources

I hope I can successfully deploy a Mistral 7B model on an edge device, ensuring efficient and optimized performance for your specific use case.

https:/.github.com/mistralai/mistral-src.git

Edge or MCU application of the model

Deploying a large language model like Mistral 7B directly on an MCU (Microcontroller Unit) is a challenging task due to the limited computational power and memory of such devices. However, deploying a simplified, optimized version or using other frameworks can make it feasible. Here’s a more detailed approach focusing on setting up on edge devices and using frameworks beyond API calls to Mistral.

1. Optimizing the Model for Edge Deployment

To deploy on an MCU or similar constrained device, you need to optimize the model extensively. This includes:

  • Quantization: Reducing the precision of the model weights.
  • Pruning: Removing parts of the model that contribute less to the output.
  • Model Distillation: Training a smaller model to replicate the behavior of a larger model.

2. Using TinyML Frameworks

Frameworks like TensorFlow Lite for Microcontrollers and ONNX Runtime can help in running models on MCUs.

3. Example: Using TensorFlow Lite for Microcontrollers

Step 1: Convert Model to TensorFlow Lite

First, convert the trained model to TensorFlow Lite format.

import tensorflow as tf
from transformers import TFAutoModelForCausalLM

# Load the pre-trained model
model_name = "mistralai/Mistral-7B-v0.1"
model = TFAutoModelForCausalLM.from_pretrained(model_name, from_pt=True)

# Convert to TensorFlow Lite
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()

# Save the model
with open("mistral_model.tflite", "wb") as f:
    f.write(tflite_model)

Step 2: Optimize the TensorFlow Lite Model

Optimize the model for edge devices.

# Use TFLite Converter for optimization
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_quantized_model = converter.convert()

# Save the quantized model
with open("mistral_model_quantized.tflite", "wb") as f:
    f.write(tflite_quantized_model)

Step 3: Deploying on an MCU

Use TensorFlow Lite for Microcontrollers to run the model.

  1. Install TensorFlow Lite for Microcontrollers

    Follow the installation guide for TensorFlow Lite for Microcontrollers specific to your MCU.

  2. Load and Run the Model

    Write the necessary code to load and run the TensorFlow Lite model on your MCU.

     // Include the TensorFlow Lite header files
     #include "tensorflow/lite/micro/all_ops_resolver.h"
     #include "tensorflow/lite/micro/micro_interpreter.h"
     #include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
     #include "tensorflow/lite/schema/schema_generated.h"
     #include "tensorflow/lite/version.h"
    
     // Load the model from the file
     const tflite::Model* model = tflite::GetModel(mistral_model_quantized_tflite);
     if (model->version() != TFLITE_SCHEMA_VERSION) {
         printf("Model provided is schema version %d not equal to supported version %d.", model->version(), TFLITE_SCHEMA_VERSION);
         return 1;
     }
    
     // Set up the interpreter
     static tflite::MicroMutableOpResolver<10> micro_op_resolver;
     tflite::MicroInterpreter interpreter(
         model, micro_op_resolver, tensor_arena, tensor_arena_size, error_reporter);
    
     // Allocate memory from the tensor_arena for the model's tensors.
     TfLiteStatus allocate_status = interpreter.AllocateTensors();
     if (allocate_status != kTfLiteOk) {
         printf("AllocateTensors() failed");
         return 1;
     }
    
     // Obtain pointers to the model's input and output tensors.
     TfLiteTensor* input = interpreter.input(0);
     TfLiteTensor* output = interpreter.output(0);
    
     // Fill the input tensor with your data.
     // TODO: Add code to populate input data
    
     // Run inference
     TfLiteStatus invoke_status = interpreter.Invoke();
     if (invoke_status != kTfLiteOk) {
         printf("Invoke failed");
         return 1;
     }
    
     // Process the output data.
     // TODO: Add code to handle the output data
    

4. Using ONNX Runtime

Another option is using ONNX Runtime, which supports deployment on edge devices and can be used with optimized models.

Step 1: Convert the Model to ONNX

Convert your model to ONNX format.

import torch
from transformers import AutoModelForCausalLM

# Load the pre-trained model
model_name = "mistralai/Mistral-7B-v0.1"
model = AutoModelForCausalLM.from_pretrained(model_name)

# Create dummy input for tracing
dummy_input = torch.randint(0, 50256, (1, 1))

# Export the model
torch.onnx.export(model, dummy_input, "mistral_model.onnx", opset_version=11)

Step 2: Optimize the ONNX Model

Use ONNX tools to optimize the model for edge deployment.

python -m onnxruntime.transformers.optimizer --input mistral_model.onnx --output mistral_model_optimized.onnx

Step 3: Deploying on an Edge Device

Use ONNX Runtime to run the model on an edge device.

import onnxruntime as ort
import numpy as np

# Load the ONNX model
session = ort.InferenceSession("mistral_model_optimized.onnx")

# Prepare input data
input_data = np.random.randint(0, 50256, (1, 1)).astype(np.int64)

# Run inference
outputs = session.run(None, {"input_ids": input_data})

print(outputs)

Conclusion

Deploying a large model like Mistral 7B on an MCU is challenging and typically requires significant optimization and use of specialized frameworks. By converting the model to formats supported by TensorFlow Lite or ONNX Runtime, and optimizing it through quantization and other techniques, you can run the model on constrained devices. This allows you to leverage the power of large language models in edge applications, enabling local processing with reduced latency and dependence on network connectivity.

The following wiki, pages and posts are tagged with

Title Type Excerpt
2021-10-04-wiki-colloseo.md post 추천의 원리 더 깊게 보기 클러스터링, 협업필터링, 프로파일링
2021-10-04-wiki-googleapi-image-search.md post 동영상 검색 기술을 활용한 서비스 등장
2021-10-04-wiki-recopic.md post 개인화추천- 이커머스- 클러스터링- 협업필터링- 프로파일링
2021-10-04-wiki-tmong.md post 서비스 제작 사례를 통해 서비스 기획 프로세스를 알아봅니다.
Weather app from firebase post Sunday-weather-app, open weather api
Bridging Language Barriers with Blockchain Technology post Tue, Apr 16, 24, LangChain is a revolutionary platform leveraging blockchain technology to facilitate seamless communication and collaboration across languag...
AWS Korean Voice ChatGPT: Enhancing Conversational AI with Hugging Face post Sat, Apr 20, 24, Leveraging state-of-the-art deep learning techniques and pretrained language models, Korean Voice ChatGPT enables seamless and natural conve...
Performance test for aidoncent based on EnglishTogether post Mon, Apr 22, 24, Aidocent setup to performance test within 5 days
aidocent performance test post Fri, Apr 26, 24, aidocent performance test
Exploring Edge AI Technologies post Tue, May 21, 2024, A comprehensive guide on Edge AI technologies, their opportunities, limitations, and practical applications.
Exploring Edge AI Technologies post Tue, May 21, 2024, A comprehensive guide on Edge AI technologies, their opportunities, limitations, and practical applications.
github and hf implementation post Wed, May 22, 24, run Mistral7B locally and integrate with existing llm app
FPGA Overview post Wednesday, FPGA is fast-growing and most adaptable ai application at the edge
Leave the routines to ai at the edge and always keep yourself on the loop post Wed, May 29, 24, prototyping an llm ai on fpga
Workflow and Architecture of AI models on Edge devices using FPGA post Fri, May 31, 24, comprehensive framework for deploying AI models at the edge, leveraging various technologies. how to connect with jupyternotebook
locally serving llm chatbots post Tue, Jun 11, 24, using langchain production ready llmrag
현장의 요구 사항을 반영한 실전 Voice AI 개발 플랫폼 post Sun, Sep 21, 25, Practical Voice AI platform that aligns field requirements with ASR/TTS/NLU integration, pipelines, and deployment
Voice Platform — Extract from Kor2Unity summary post Mon, Sep 22, 25, Extracted items from Kor2Unity issue summary
Goorm AI워크로드 최적화 클라우드 엔지니어링 트랙 지원 post Mon, Sep 22, 25, AI 트랙 지원용 링크 모음
Exploring Jetson Nano in AIoT Applications page Jetson Nano serves as a potent platform for Edge AI applications, supporting popular frameworks like TensorFlow, PyTorch, and ONNX. Its compact form factor a...
🔭sensor detection page RealSense with Open3D

{# nothing on index to avoid visible raw text #}