Deep dive into Parrot Bebop drone modifications and autonomous flight control using ROS. Includes hardware modifications, UART connections, and custom flight control implementations.

Introduction to Bebop Autonomy Project

Repository: bebop_autonomy

This project provides a comprehensive ROS driver for Parrot Bebop Drones 1.0 & 2.0, enabling autonomous flight capabilities and advanced telemetry access through hardware modifications.

Hardware Modifications and UART Access

Opening the Bebop Drone

The first step in gaining full control over the Bebop involves carefully disassembling the drone to access internal components.

Bebop Remove Screws Carefully removing the screws to access internal components

Bebop Recovery Remove Neck Removing the neck assembly for deeper hardware access

UART Connection Setup

To enable advanced debugging and low-level control, we establish a UART connection to the drone’s main processor.

Bebop UART Port Location of the UART port on the Bebop mainboard

Bebop UART Connection Proper UART connection setup for telemetry access

Required Hardware for UART Connection

  • Single Pin Header Connectors: For creating reliable connections

Bebop Single Pin Headers Single pin header connectors for UART interface

UART Connection Specifications

# UART Configuration
Baud Rate: 115200
Data Bits: 8
Stop Bits: 1
Parity: None
Flow Control: None

# Connection Pinout
Pin 1: GND (Ground)
Pin 2: RX (Receive - connect to TX of USB-Serial adapter)
Pin 3: TX (Transmit - connect to RX of USB-Serial adapter)
Pin 4: 3.3V (Power - do not connect to external power)

Complete Connection Setup

Bebop Connections Overview Complete connection setup showing all interfaces

Bebop Connections Detail Detailed view of the connection assembly

ROS Integration and Autonomous Flight

ROS Driver Architecture

The Bebop autonomy system provides a comprehensive ROS interface for flight control and sensor data access.

#!/usr/bin/env python
"""
Bebop Autonomous Flight Controller
Integrates with ROS for high-level mission planning
"""

import rospy
from geometry_msgs.msg import Twist
from sensor_msgs.msg import Image, Imu
from std_msgs.msg import Empty, Bool
from bebop_msgs.msg import Ardrone3PilotingStateFlightStateChanged

class BebopAutonomousController:
    def __init__(self):
        rospy.init_node('bebop_autonomous_controller')
        
        # Publishers for flight control
        self.cmd_vel_pub = rospy.Publisher('/bebop/cmd_vel', Twist, queue_size=1)
        self.takeoff_pub = rospy.Publisher('/bebop/takeoff', Empty, queue_size=1)
        self.land_pub = rospy.Publisher('/bebop/land', Empty, queue_size=1)
        
        # Subscribers for sensor data
        rospy.Subscriber('/bebop/image_raw', Image, self.image_callback)
        rospy.Subscriber('/bebop/imu', Imu, self.imu_callback)
        rospy.Subscriber('/bebop/states/flight', 
                        Ardrone3PilotingStateFlightStateChanged, 
                        self.flight_state_callback)
        
        # Flight state variables
        self.current_flight_state = 0  # 0=landed, 1=takeoff, 2=hovering, etc.
        self.autonomous_mode = False
        self.mission_waypoints = []
        self.current_waypoint_index = 0
        
        rospy.loginfo("Bebop Autonomous Controller initialized")
    
    def image_callback(self, msg):
        """Process camera feed for computer vision"""
        # Convert ROS image to OpenCV format
        cv_image = self.bridge.imgmsg_to_cv2(msg, "bgr8")
        
        # Process image for navigation
        navigation_command = self.process_vision_navigation(cv_image)
        
        if self.autonomous_mode:
            self.execute_navigation_command(navigation_command)
    
    def imu_callback(self, msg):
        """Process IMU data for attitude control"""
        self.current_orientation = msg.orientation
        self.current_angular_velocity = msg.angular_velocity
        self.current_linear_acceleration = msg.linear_acceleration
        
        # Update flight controller with IMU data
        self.update_attitude_controller()
    
    def flight_state_callback(self, msg):
        """Monitor flight state changes"""
        self.current_flight_state = msg.state
        rospy.loginfo(f"Flight state changed to: {msg.state}")
        
        if msg.state == 2 and self.autonomous_mode:  # Hovering
            self.start_autonomous_mission()
    
    def autonomous_takeoff(self):
        """Initiate autonomous takeoff sequence"""
        rospy.loginfo("Starting autonomous takeoff")
        takeoff_msg = Empty()
        self.takeoff_pub.publish(takeoff_msg)
        self.autonomous_mode = True
    
    def autonomous_land(self):
        """Initiate autonomous landing sequence"""
        rospy.loginfo("Starting autonomous landing")
        land_msg = Empty()
        self.land_pub.publish(land_msg)
        self.autonomous_mode = False
    
    def execute_waypoint_mission(self, waypoints):
        """Execute a series of GPS waypoints"""
        self.mission_waypoints = waypoints
        self.current_waypoint_index = 0
        
        if self.current_flight_state == 2:  # Already hovering
            self.navigate_to_next_waypoint()
    
    def navigate_to_next_waypoint(self):
        """Navigate to the next waypoint in the mission"""
        if self.current_waypoint_index >= len(self.mission_waypoints):
            rospy.loginfo("Mission completed, landing")
            self.autonomous_land()
            return
        
        target_waypoint = self.mission_waypoints[self.current_waypoint_index]
        
        # Calculate navigation command to reach waypoint
        cmd_vel = self.calculate_waypoint_navigation(target_waypoint)
        self.cmd_vel_pub.publish(cmd_vel)
        
        rospy.loginfo(f"Navigating to waypoint {self.current_waypoint_index + 1}")

Computer Vision Integration

The system integrates computer vision for obstacle avoidance and target tracking:

import cv2
import numpy as np
from cv_bridge import CvBridge

class BebopVisionSystem:
    def __init__(self):
        self.bridge = CvBridge()
        self.obstacle_detector = self.load_obstacle_detection_model()
        self.target_tracker = self.load_target_tracking_model()
        
    def process_vision_navigation(self, cv_image):
        """Process camera feed for autonomous navigation"""
        # Obstacle detection
        obstacles = self.detect_obstacles(cv_image)
        
        # Target tracking (if mission requires)
        targets = self.track_targets(cv_image)
        
        # Generate navigation command
        navigation_cmd = self.generate_navigation_command(obstacles, targets)
        
        return navigation_cmd
    
    def detect_obstacles(self, image):
        """Detect obstacles in the camera feed"""
        # Convert to HSV for better color detection
        hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
        
        # Edge detection for obstacle boundaries
        edges = cv2.Canny(image, 50, 150)
        
        # Contour detection for object identification
        contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        
        obstacles = []
        for contour in contours:
            area = cv2.contourArea(contour)
            if area > 1000:  # Filter small objects
                x, y, w, h = cv2.boundingRect(contour)
                obstacles.append({
                    'bbox': (x, y, w, h),
                    'area': area,
                    'distance': self.estimate_distance(w, h)
                })
        
        return obstacles
    
    def estimate_distance(self, width, height):
        """Estimate distance to object based on bounding box size"""
        # Simplified distance estimation
        # In practice, would use stereo vision or known object sizes
        focal_length = 500  # Camera focal length in pixels
        known_object_width = 0.3  # meters
        
        if width > 0:
            distance = (known_object_width * focal_length) / width
            return distance
        return float('inf')
    
    def generate_navigation_command(self, obstacles, targets):
        """Generate navigation command based on vision analysis"""
        cmd_vel = Twist()
        
        # Default forward motion
        cmd_vel.linear.x = 0.2  # 0.2 m/s forward
        
        # Obstacle avoidance
        for obstacle in obstacles:
            if obstacle['distance'] < 2.0:  # Too close
                # Turn away from obstacle
                bbox = obstacle['bbox']
                image_center = 320  # Assuming 640px width
                obstacle_center = bbox[0] + bbox[2] / 2
                
                if obstacle_center < image_center:
                    cmd_vel.angular.z = -0.3  # Turn right
                else:
                    cmd_vel.angular.z = 0.3   # Turn left
                
                cmd_vel.linear.x = 0.0  # Stop forward motion
                break
        
        return cmd_vel

Flight Mission Planning

Advanced mission planning capabilities for autonomous operations:

class BebopMissionPlanner:
    def __init__(self):
        self.flight_controller = BebopAutonomousController()
        self.gps_waypoints = []
        self.mission_type = None
        
    def plan_area_survey_mission(self, area_bounds, altitude=10.0):
        """Plan a systematic area survey mission"""
        # Generate grid pattern waypoints
        min_lat, min_lon = area_bounds['southwest']
        max_lat, max_lon = area_bounds['northeast']
        
        # Calculate survey pattern
        spacing = 0.0001  # Approximately 10m spacing
        waypoints = []
        
        lat = min_lat
        direction = 1  # 1 for east, -1 for west
        
        while lat <= max_lat:
            if direction == 1:
                lon_start, lon_end = min_lon, max_lon
            else:
                lon_start, lon_end = max_lon, min_lon
            
            waypoints.append({
                'lat': lat,
                'lon': lon_start,
                'alt': altitude,
                'action': 'navigate'
            })
            
            waypoints.append({
                'lat': lat,
                'lon': lon_end,
                'alt': altitude,
                'action': 'navigate'
            })
            
            lat += spacing
            direction *= -1  # Alternate direction for efficient coverage
        
        return waypoints
    
    def plan_inspection_mission(self, target_locations):
        """Plan an inspection mission for specific targets"""
        waypoints = []
        
        for i, target in enumerate(target_locations):
            # Approach waypoint
            waypoints.append({
                'lat': target['lat'],
                'lon': target['lon'],
                'alt': target['alt'] + 5.0,  # 5m above target
                'action': 'navigate'
            })
            
            # Inspection hover point
            waypoints.append({
                'lat': target['lat'],
                'lon': target['lon'],
                'alt': target['alt'] + 2.0,  # 2m above target
                'action': 'hover_inspect',
                'duration': 30.0  # 30 seconds inspection
            })
            
            # Circle around target for 360° view
            circle_waypoints = self.generate_circle_waypoints(
                target['lat'], target['lon'], target['alt'] + 3.0, radius=5.0
            )
            waypoints.extend(circle_waypoints)
        
        return waypoints
    
    def execute_mission(self, waypoints):
        """Execute the planned mission"""
        rospy.loginfo(f"Starting mission with {len(waypoints)} waypoints")
        
        # Takeoff first
        self.flight_controller.autonomous_takeoff()
        
        # Wait for takeoff completion
        rate = rospy.Rate(10)  # 10 Hz
        while self.flight_controller.current_flight_state != 2:  # Not hovering
            rate.sleep()
        
        # Execute waypoint mission
        self.flight_controller.execute_waypoint_mission(waypoints)

Advanced Features

Real-time Telemetry and Logging

class BebopTelemetryLogger:
    def __init__(self):
        self.telemetry_data = {
            'timestamp': [],
            'position': [],
            'attitude': [],
            'velocity': [],
            'battery_level': [],
            'flight_state': []
        }
        
    def log_telemetry(self):
        """Continuously log flight telemetry data"""
        rospy.Subscriber('/bebop/odom', Odometry, self.odom_callback)
        rospy.Subscriber('/bebop/battery', BatteryState, self.battery_callback)
        
    def save_flight_log(self, filename):
        """Save telemetry data to file"""
        import json
        with open(filename, 'w') as f:
            json.dump(self.telemetry_data, f, indent=2)

Emergency Safety Features

class BebopSafetySystem:
    def __init__(self):
        self.emergency_land_pub = rospy.Publisher('/bebop/emergency', Empty, queue_size=1)
        self.safety_checks_enabled = True
        
    def monitor_safety_conditions(self):
        """Continuously monitor safety conditions"""
        # Battery level check
        if self.battery_level < 20.0:
            rospy.logwarn("Low battery detected, initiating emergency landing")
            self.emergency_land()
        
        # GPS signal check
        if not self.gps_fix_available:
            rospy.logwarn("GPS signal lost, switching to manual control")
            self.disable_autonomous_mode()
        
        # Wind speed check
        if self.wind_speed > 10.0:  # m/s
            rospy.logwarn("High wind detected, landing for safety")
            self.emergency_land()
    
    def emergency_land(self):
        """Execute emergency landing procedure"""
        emergency_msg = Empty()
        self.emergency_land_pub.publish(emergency_msg)

Hardware Specifications and Performance

Bebop Drone Specifications

  • Flight Time: 11 minutes
  • Camera: 1080p HD with 3-axis stabilization
  • Range: 300m with smartphone, 2km with SkyController
  • Max Speed: 13 m/s horizontal, 6 m/s vertical
  • Weight: 400g
  • Sensors: Accelerometer, Gyroscope, Magnetometer, GPS, Barometer

Performance Metrics

  • Control Latency: <50ms via WiFi
  • UART Communication: 115200 baud
  • Video Streaming: 1080p at 30fps
  • Autonomous Navigation Accuracy: ±1m with GPS
  • Obstacle Avoidance Range: 2-10m depending on conditions

Installation and Setup

ROS Package Installation

# Create catkin workspace
mkdir -p ~/bebop_ws/src
cd ~/bebop_ws/src

# Clone bebop_autonomy repository
git clone https://github.com/aiegoo/bebop_autonomy.git

# Install dependencies
cd ~/bebop_ws
rosdep install --from-paths src --ignore-src -r -y

# Build the package
catkin_make

# Source the workspace
echo "source ~/bebop_ws/devel/setup.bash" >> ~/.bashrc
source ~/.bashrc

Hardware Setup Requirements

  • USB-to-UART adapter (3.3V compatible)
  • Single pin header connectors
  • Small Phillips head screwdriver
  • Anti-static wrist strap (recommended)
  • Multimeter for testing connections

Network Configuration

# Connect to Bebop WiFi network
sudo nmcli dev wifi connect "Bebop2-######" password "bebop2password"

# Verify connection
ping 192.168.42.1

# Launch ROS driver
roslaunch bebop_driver bebop_node.launch

Conclusion

The Bebop Autonomy project demonstrates comprehensive drone modification and autonomous flight control implementation. Through hardware modifications including UART access and ROS integration, the system enables:

  1. Advanced Telemetry: Direct access to low-level flight data
  2. Autonomous Navigation: GPS waypoint missions and computer vision guidance
  3. Safety Systems: Emergency procedures and condition monitoring
  4. Extensible Framework: Easy integration of additional sensors and capabilities

The project serves as a foundation for advanced drone research and development, providing both hardware access and software frameworks for autonomous flight applications.

References and Further Reading

{# nothing on index to avoid visible raw text #}